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Abstract
Diversity is a central concept not only in ecology, but also in the social sciences and in bib-
liometrics. The discussion about an adequate measure of diversity is strongly driven by the 
work of Rao (Sankhyā Indian J Stat Series A 44:1-22, 1982) and Stirling (J R Soc Interface 
4:707-719, 2007). It is to the credit of Leydesdorff (Scientometr 116:2113-2121, 2018) to 
have proposed a decisive improvement with regard to an inconsistency in the Rao-Sterling-
diversity indicator that Rousseau (Scientometr 116:645-653, 2018) had pointed out. With 
recourse to Shannon’s probabilistically based entropy concept, in this contribution the 
three components of diversity “variety”, “balance”, and “disparity” are to be reconceptual-
ized as entropy masses that add up to an overall diversity indicator dive. Diversity can thus 
be interpreted as the degree of uncertainty or unpredictability. For "disparity", for exam-
ple, the concept of mutual information is used. However, probabilities must be estimated 
statistically. A basic estimation strategy (cross tables) and a more sophisticated one (para-
metric statistical model) are presented. This overall probability-theoretical based concept 
is applied exemplarily to data on research output types of funded research projects in UK 
that were the subject of the Metric Tide Report (REF 2014) and ex-ante evaluation data of 
a research funding organization. As expected, research output types depend on the research 
area, with journal articles having the strongest individual balance among the output types, 
i.e., being represented in almost all research areas. For the ex-ante evaluation data of 1,221 
funded projects the diversity components were statistically estimated. The overall diversity 
of the projects in terms of entropy is 55.5% of the maximal possible entropy.
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Introduction

Diversity is not only a central concept in scientometrics (e.g., interdisciplinarity), but 
also in ecology (e.g., Jost, 2007) or in the social sciences (e.g., Brusco et  al., 2020; 
Jones & Dovidio, 2018). Therefore, the measurement and operationalization of this 
concept is of eminent importance, which is also reflected in numerous publications on 
this concept especially in the field of ecology (see Foredeman et al. (2017)). A certain 
break in the development of this concept comes from the work of Rao and Stirling (Rao, 
1982; Stirling, 2007), who developed a diversity concept based on the existing litera-
ture, which, in brief, consists of three components:

• Variety «Variety is the number of categories into which system elements appor-
tioned. It is the answer to the question: “How many types of things we have? … All 
else being equal, the greater the variety, the greater the diversity.» (Stirling, 2007, p. 
709),

• Balance «Balance is a function of the pattern of apportionment of elements across 
categories… All else being equal the more even is the balance, the greater the diver-
sity.» (Stirling, 2007, p. 709),

• Disparity “Disparity refers to the manner and degree in which the elements may 
be distinguished… All else being equal, the more disparate are the represented ele-
ments, the greater the diversity.” (Stirling, 2007, p. 709).

Thus, first Rao (1982) and later Stirling (2007, p. 721) developed a "general diver-
sity heuristic" as a sum indicator of different elements j, i of a system (e.g., different 
research area in research proposals):

where pi and pj are proportions of elements i and j in the system (as base for balance), and 
dij is the is the degree of difference between the elements (disparity). Variety is the number 
of different elements. This concept had a strong influence not only in ecology (e.g., Rous-
seau et al., 1999) but also in scientometrics (e.g., Goyanes et al., 2020; Rousseau, 2018; 
Wang, Thijs, & Glänzel, 2015). The idea of composing an indicator multiplicatively from 
several individual indicators is captivating and opens up many possibilities for analysis. It 
is also easy to calculate.

Unfortunately, Rousseau (2018, p. 651) was able to show with a simple data exam-
ple that a central assumption of the diversity indicator ("monotonicity") formulated by 
Stirling (2007, p. 711) does not hold. For a given variety and disparity the measure does 
not increase monotonically with balance. This points to fundamental problems with this 
concept. It is to the credit of Leydesdorff (2018) and Leydesdorff, Wagner, and Born-
mann (2019b) to create an indicator that does not have these problems and continues to 
multiplicatively link the three individual diversity indicators, which is certainly a via-
ble approach despite criticism and modifications (Leydesdorff et al., 2019a; Rousseau, 
2019).

For i = 1 to nc and j = 1 to nc categories, the diversity is defined as follows (Leydes-
dorff, 2018, p. 2116):

(1)D =
∑
ji(i≠j)

dijpipj
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where nc is the number of categories, N the total number of categories, GINI is the Gini-
coefficient,  dij is the disparity the Euclidean distance in terms of 1-cosine (Ahlgren et al., 
2003), which is normalized by the factor (nc (nc − 1)). Unlike the classical Euclidean meas-
ure, dij in terms of 1-cosine varies between 0 and 1. The Bravais-Pearson correlation is 
not suitable for measuring similarity taking values between − 1 and + 1. Additionally, the 
cosine measure is invariant for adding zeros.

In this paper, a different path shall be taken, namely a path back to the information-
theoretical roots of this concept, which is based on probabilistic foundations as already 
used by Shannon (1948). Although the initial work of Shannon and the entropy concept 
is mentioned in most publications and is also part of Stirling’s concept, the probabilistic 
foundation and the classical entropy concept seems to have been lost or is currently not 
sufficiently received. For example, in a paper in Scientometrics, Shaw Jr. (1981) derives his 
concept of information theory from a thermodynamic representation of entropy, in which 
probabilities are only implicitly used. But why is probability theory for a consistent diver-
sity concept so important? Four main reasons can be given:

1. Unclear theoretical basis: The theoretical basis for combining the different elements of 
diversity is not immediately apparent. For example, probabilities as pj or pi are linked to 
correlations or similarity measures (dij, Eq. 1, 2), which is not statistically derived from 
any probabilistic or statistical framework. Even Rao (1982, p. 7) himself says about the 
choice of dij: “The choice of dij is not a statistical problem and will depend on an indi-
vidual’s assessment of differences between qualitative categories reference to a given 
problem. However, one can use methods of multidimensional scaling in estimating dij 
by using supplementary information such as inequality relationships between dij and drs 
for different (i, j) and (r, s).”

2. Accuracy: Most diversity indicators are defined numerically, although the relative fre-
quencies or probabilities are statistical quantities and thus have a statistical measurement 
error. Probabilities based on small sample sizes are far less accurate than probabilities 
estimated from large samples.

3. Interpretation of indicators: Given the large number of diversity indicators, the ques-
tion remains as to how to interpret the individual indicators and what advantages one 
indicator has over another indicator.

4. Statistical analysis: Diversity indicators often have to be processed statistically, which 
in turn requires distributional assumptions. Therefore, the question is whether the data 
should not be formulated in a probabilistic form in order to apply the statistical analysis 
more or less directly to the raw data.

The central idea of the paper is to refer back to Shannon’s concept of entropy (Leydes-
dorff & Ivanova, 2021), which is based on probability theory and forms the basis of today’s 
diversity concepts, to arrive at a modified concept of diversity that firstly avoids previous 
inconsistencies in the diversity concept, secondly allows a simple form of interpretation 
in terms of uncertainty and reduction of uncertainty (entropy), and thirdly forms the basis 
both for new types of diversity indicators and for statistical modelling. When it comes to 

(2)Divc = (nc∕N) ⋅ GINI ⋅

⎡
⎢⎢⎢⎢⎣

i=nc
j=nc�
i=1
j=1
i≠j

dij

(nc ⋅ (nc − 1))

⎤
⎥⎥⎥⎥⎦
,
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an application, the probabilities must be determined numerically, and that’s when statistics 
comes into play. Probabilities are not fixed quantities but, like any statistical parameter, 
have estimation errors that are higher the smaller the sample size. Additionally, statistical 
models make it possible to include explanatory variables to explain, predict or adjust prob-
abilities. Therefore, the information-theoretical approach is complemented by a statistical 
estimation approach. In the following, first the modified diversity concept and an indicator 
will be derived in probabilistic terms, and second a statistical approach will be outlined 
how to estimate these diversity components. The approach will be illustrated both with a 
practical application on research output data from Metrics Tide (https:// respo nsibl emetr ics. 
org/ the- metric- tide/) and ex-ante evaluation data of projects funded by a Swiss research 
funding organization. The paper is an extended version (statistical approach, ex-ante evalu-
ation data) of a paper presented at the “International Conference on Scientometrics and 
Informetrics” (ISSI 2021) (Mutz, 2021).

Methodological approach

Probabilistic framework of information theory and modified diversity indicator dive

Within information theory, information is defined purely syntactically without refer-
ence to semantics based on probability theory. In the following, a simple example will be 
taken as a starting point: The diversity of research output types of funded projects in the 
field of Natural Science (e.g., Mutz et al., 2012, 2014). Let us assume that project reports 
from 1,000 funded projects are available as part of an ex-post evaluation (synthetic data, 
Table 1) with two outputs. The marginal frequencies of N = 4 different output types (output 
1) are shown in Table 2, on one side before the data analysis without any information (prior 
or expectations) and on the other side after the empirical data analysis (posterior).

We choose a step-by-step approach. First, we explain the basic concepts of Shannon’s 
information theory using the marginal frequency table of document types (Table 2, output 
1) on the assumption that a project produces only one output of a particular type at a time. 
However, research projects usually produce several outputs, which might be combined, 
e.g., output 1 "article" and output 2 "article". Therefore, in a second step, it is necessary to 
open the box by analyzing the combination of document types of the first versus the second 
output in a cross table “output 1 × output 2” (Table 1). A further information-theoretical 

Table 1  Toy example: Cross table of output 1 and output 2 for 1000 funded projects (case II dependence)

For instance, 50 projects have proceeding papers and books as outputs, 800 projects have articles as outputs

Output 2

Output 1 Books Articles Proceedings 
papers

Reports Marginal 
frequen-
cies

Books 50 0 50 0 100
Articles 0 800 0 0 800
Proceedings papers 50 0 50 0 100
Reports 0 0 0 0 0
Marginal frequencies 100 800 100 0 1000

https://responsiblemetrics.org/the-metric-tide/
https://responsiblemetrics.org/the-metric-tide/
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concept will be introduced, the concept of "mutual information". A very good introduction 
can also be found in the works of Leydesdorff (Leydesdorff, 1991, 1995; Leydesdorff & 
Ivanova, 2021).

Step 1: Basic concepts

The following metaphor can be used to define information (Amann & Müller-Herold, 
2011, p. 1f). If one wants to know the type of one of the four project outputs, exactly 
2 binary questions are necessary to determine the type (Table  2, decision tree). With 8 
output types 3 binary questions and with N =  2k types k binary questions are necessary. 
The information content as number of binary questions is defined as I = k =  log2(N), if all 
events are equally likely to occur (prior, Table 2) or no empirical information is available. 
The maximum information content in the case of equal probabilities is I =  log2(4) = 2 bits 
(see Table 2, code). Another definition of information is obtained from probability theory, 
where the output type is a random variable X with j = 1 to N possible events or occurrences 
(books, articles,…). Thus, the information content is  log2(1/pj) or −  log2(pj) with pj = 1/N if 
all events have the same probability (assumption  log2(pj = 0) = 0). The rarer the event, the 
lower the probability, the higher the information. The average information over all events 
is then:

and is called Shannon entropy with the assumptions that 
∑N

i=1
pj = 1.0 and 

 log2(pj = 0) = 0. It is assumed in a first step that the probability of occurrence of one event 
does not depend on the probability of occurrence of another event, an assumption which 
will be given up later. In research projects, the publication of proceedings papers should 
not depend on whether or not a journal article has also been published.

Shannon Entropy, as a measure of information, ultimately expresses the degree of 
uncertainty. For example, in a coin toss the uncertainty is highest when the probability of 
heads or tails is 0.5. A probability of 0.8 for heads, for example, reduces the uncertainty 

(3)H(X) =

N∑
j=1

−pj log2(pj)

Table 2  Marginal relative frequencies for different output types (data example) and decision tree

prior = expectation before the data analysis, posterior = probabilities calculated by dividing the marginal fre-
quencies in Table 1 by the total 1000

Events Output type Code prior posterior

1 Books 00 0.25 0.10

 2 Articles 10 0.25 0.80
3 Proceedings paper 01 0.25 0.10
4 Reports 11 0.25 0
Entropy 2 0.92
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(tampered coin toss). People who bet on "heads" have a greater chance of winning than 
those who bet on "tails". In the above example, maximum entropy (H(X) = 2) is reached 
when there is equal probability (pj = 0.25) of the events. However, the actual observed fre-
quencies as an estimate of the probabilities are not equal, the resulting entropy and thus 
uncertainty is reduced by 54% from 2 to 0.92 bits (see Table 2). The total entropy is the 
sum of − 0.1*log2(0.1) − 0.8* −  log2(0.8) − 0.1*log2(0.1) − 0*log2(0) = 0.92. These consid-
erations are in line with the idea of Bayesian statistics, in which probability is defined as 
uncertainty. Bayesian Inference can be defined as a statistical learning process in which an 
initial uncertainty about a parameter defined as a prior probability is reduced in light of 
the data (posterior probability). (Kruschke, 2011, p. 56f). With the entropy concept, a first 
measure of diversity can be derived, that is "balance". For example, the more the observed 
probabilities resemble an equal probability, the higher is the so-called balance, the higher 
is the entropy or uncertainty.

Shannon also refers to "variety": "With equally likely events there is more choice, or 
uncertainty, when there are more possible events." (Shannon, 1948, p. 10). Furthermore, 
variety could also be traced back to an entropy measure. The maximum possible variety 
would be N, i.e., the maximum possible number of events in a population (here N = 4 out-
put types). Finally, the maximum variety can be defined as the maximum entropy of the 
system as follows:

In the case of four output types, the maximum variety would be −  log2(1/4). The 
observed variety corresponds to the number of events with nonzero probability pj > 0:

where 
N∑
j=1

(pj > 0) is the number of units (e.g., disciplines) in use. Eventually, (pj > 0) is a 

0/1-indicator variable with 1 (if pj > 0) and 0 (if pj = 0)).
For the above example, the  varietyobs is −  log2(1/3). Similarly, (Leydesdorff 2018, p. 

2115) argues when defining a relative variety 
∑N

j=1
(pj > 0)∕N . For an common diversity 

indicator one could add the two entropy masses balance and diversity, although this sum 
does not represent a joint-distribution H(A, B) in probabilistic terms, but can still be inter-
preted in terms of entropy with balance and variety as independent quantities:

Step 2: “Mutual information”

To get to the last component of diversity, "disparity", the assumption of independent events 
has to be abandoned. For example, research outputs in a research project may be published 
in different output types and this may create stochastic dependencies. For example, the 

(4)HVarietymax
=

N∑
j=1

1∕N log2(1∕N) = − log2(1∕N)

(5)

HVarietyobs
= −

N�
j=1

⎛
⎜⎜⎜⎜⎝
(pj > 0)

1

N∑
j=1

(pj > 0)

log2

⎛
⎜⎜⎜⎜⎝

1

N∑
j=1

(pj > 0)

⎞
⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎠
= − log2(1∕

N�
j=1

(pj > 0)),

(6)Hdiversity = Hvariety + Hbalance
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probability of a research article may depend on whether or not a proceedings paper has 
been published. For simplification, it is assumed that results of a research project are pub-
lished in two research outputs with a maximum of two different output types, where it is 
also possible that none of the output types is published or the same output type can be 
chosen twice. These two research outputs can be defined as two random variables X and Y.

Table 3 presents a cross-tabulation of cell frequencies and marginal frequencies of the 
two outputs, where the marginal frequencies of the type of the two outputs are the same 
as in Table 2, but do not correspond to the cell frequencies of Table 1. It quickly becomes 
apparent that output 2 does not depend on output 1; the ratios of the relative frequencies 
across the columns remain the same across the rows. For example, for “articles” the row 
frequencies divided by the respective marginal frequency remains equal across columns: 
0.08/0.10 = 0.64/0.80 = 0.08/0.10 = 0.80. Thus p(X|Y) = P(X) or H(X, Y) = H(X) + H(Y), the 
marginal frequencies are sufficient (“overall stochastic balance”).

For Table  4, which corresponds to the data of Table  1, the situation is different: 
P(X|Y) ≠ P(X), i.e., stochastic dependence is present. For example, articles in both outputs 
occur more frequently (p = 0.80) than expected in the case of independence of X and Y 
(p = 0.80*0.80 = 0.64). Two events are stochastically independent, if the probability of X 
AND Y equals the product of the probability of X and the probability of Y: P(X ∩ Y) = P(X) 
P(Y).

In that case, Shannon coined the term mutual information I(X, Y), i.e. the reduction of 
the uncertainty of one random variable by considering another random variable. In the case 
of two random variables, the mutual information is (Eshima, 2020, p. 8f):

Table 3  Case I: Independence

Event Output type X (Output 2) Total

Books Articles Proceedings 
paper

Reports

Y (Output 1) 1 Books .01 .08 .01 .00 .10
2 Articles .08 .64 .08 .00 .80
3 Proceedings paper .01 .08 .01 .00 .10
4 Reports .00 .00 .00 .00 .00
Total .10 .80 .10 .00 1.00

Table 4  Case II: Dependence

Event Output type X (Output 2) Total

Books Articles Proceedings 
paper

Reports

Y (Output 1) 1 Books .05 .00 .05 .00 .10
2 Articles .00 .80 .00 .00 .80
3 Proceedings paper .05 .00 .05 .00 .10
4 Reports .00 .00 .00 .00 .00
Total .10 .80 .10 .00 1.00
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The joint entropy of X and Y is then (see Fig. 1):

The mutual information I(X, Y) can be calculated form the data using the following 
equation:

where p(x, y) is the joint probability of X and Y. If the events are independent, then p(x, 
y) = p(x)p(y) and I(X, Y) = 0. The more the event Y depends on X, the higher the mutual 
information I(X, Y), the lower the total entropy H(X, Y). Mutual information represents 
the stochastic dependence of X and Y and is not a correlation. Regarding binary com-
munications Pregowska, Szczepanski, and Wajnryb (2015, p. 1) conclude: “Our research 
shows that the mutual information cannot be replaced by sheer correlations.” With respect 
to Table 4 the mutual information for output 1 “article” and output 2 “article” is I(X = 2, 
Y = 2) = 0.80  log2(0.80/(0.80 0.80)) = 0.80  log2(1.25) = 0.258.

In Fig. 2 the relationships of the different concepts of entropy and mutual information 
are shown as a Venn diagram (Fig. 1).

Finally, mutual information, already mentioned by Shannon (1948, p. 12), defines the 
third component of diversity, "disparity", i.e. the degree of dependence of categories or 
events. The higher I(X, Y), the lower the disparity. If I(X, Y) is zero, then the disparity is 
maximal.

In the above example (Table  4), the mutual information is I(X, Y) = 0.72, the uncon-
ditional entropy of X is H(X) = 0.92, and the conditional entropy is H(X|Y) = 0.20. This 
reduces the uncertainty, i.e., overall diversity, by (0.92-0.20)/0.92) = 78.3% when tak-
ing into account the dependence in the data in the sense of disparity. Another measure of 
dependency is Cramer`s V a correlation coefficient, for categorical variables. Comparable 
to the mutual information I(X, Y), Cramer`s V of 0.29 shows that output 1 and output 2 are 
correlated.

(7)I(X, Y) = H(X) + H(Y) − H(X, Y) = H(Y) − H(Y|X)

H(X|Y) = H(X) − I(X, Y)

(8)H(X, Y) = H(X) + H(Y) − I(X,Y)

(9)I(X,Y) =
∑
x�X

∑
y�Y

p(x, y) log2

(
p(x, y)

p(x)p(y)

)
,

Fig. 1  Entropy measures
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In the case of 3 research outputs X, Y and Z, for example, the above formula, corre-
sponding to the addition theorem of probabilities, expands as follows:

where the last term of Eq. 10 is positive and represents a correction term in a quantity alge-
braic representation (i.e., subtraction of an intersection).

Unlike Stirling and Leydesdorff (Leydesdorff, 2018; Leydesdorff et al., 2019a; Stirling, 
2007), the different components of the overall diversity indicator dive are now additive:

where dive = 4.15 for the above example.
In summary: On the probabilistic basis of Shannon’s entropy concept, a modified diver-

sity concept was derived that is consistent, additive in nature and whose components can 
be empirically derived. The entropy concept gives the diversity concept a clear interpreta-
tion: the higher the diversity, the higher the information, the higher the uncertainty, the less 
structure there is in the data.

Statistical approach

The concept of diversity as entropy leaves unanswered how the probabilities for calculating 
entropy can be estimated statistically. To simply determine them by relative frequencies 
falls short for several reasons. bibliometric data fluctuate randomly and systematically over 
time because bibliographic data bases are continuously updated (journals, articles, cita-
tions, …). Furthermore, the data bases are incomplete with respect to fields and document 
types, for instance. Relative frequencies are only good estimates of probabilities when the 

(10)H(Y ,X, Z) = H(Y) + H(X) + H(Z) − I(Y ,X) − I(Y ,Z) − I(X,Z) + I(Y ,X,Z),

(11)dive = Hvariety + Hbalance − Idisparity,

Fig. 2  Cross-tabulate and data for the statistical estimation of probabilities for two disciplines: Cross-tabu-
late with cell frequencies (above), which can be estimated by the data design (below), where  d1-d4 are the 
dummy-codes cells (k) of the cross-tabulate (k = cell number)
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sample size goes to infinity. In the case of low sample size or cell frequencies the esti-
mation errors must be taken into account. Statistical models allow to include covariates 
to explain, predict or adjust probabilities (Bornmann et  al., 2021, p. 9317f). Different 
approaches to the statistical estimation of entropy can be found in the diversity literature, 
especially in ecology.

In the following, the thematic focus is no longer on the diversity of output types, but on 
the interdisciplinary nature of projects—the content changes, the methodological concept 
remains the same (“disciplines” are the “outputs”). In order to conduct statistical analyses, 
a concrete design for the survey of interdisciplinarity is required, which will guide the sta-
tistical analyses. For instance, in the realm of the ex-ante evaluation of project proposals 
in funding organizations, the simplest way to assess interdisciplinarity is for the principal 
investigators to list the individual disciplines that are relevant to the planned project. The 
specified single disciplines can be further grouped into major disciplines at different lev-
els of aggregation. Since several individual disciplines can be assigned to one main disci-
pline, in addition to a dichotomous representation (e.g., main discipline A present or not), 
which is favored here, a representation can be used that distinguishes different weights of 
main disciplines in a project proposal (e.g., three individual disciplines from the Humani-
ties (weight = 0.75), one individual discipline from the Natural Sciences (weight = 0.25)). 
A simple data analysis strategy via cross-tabulations is distinguished from a more sophisti-
cated one via parametric models.

Basic data analysis strategy

From the perspective of probability theory, each (main) discipline then establishes a ran-
dom variable. Since certain disciplines are often mentioned together in project proposals 
(e.g., chemistry and biology), the random variables are usually not independent of each 
other (similarity), which is expressed in the diversity indicator "disparity" (1-similarity). 
For the estimation of diversity as entropy, the so-called marginal frequency or share of a 
discipline is, therefore, not sufficient; cell frequencies are also required (as shown in cross-
tabulation of categorical random variables). In the simplest case of 2 disciplines (named 
or not named in the project application), a 2 × 2-cross-tabulation (Fig. 2, above) with cell 
frequencies results, which can be coded by a simple data design as base for estimation 
of the corresponding probabilities. Eventually, with cross-tabulations, cell frequencies can 
already be sufficiently calculated (alternatively via log-linear models).

Sophisticated analysis strategy

Here, a sophisticated analysis strategy is preferred, which offers the opportunity, not only to 
estimate probabilities, standard errors and confidence intervals, but also allows to include 
covariates to predict and explain probabilities and to derive statistically diversity measures. 
For example, it can be tested, whether different funding programs differ in the degree of 
interdisciplinarity of their funded projects. The central idea of this sophisticated strategy is 
to express the probabilities pij (Fig. 2.) in parameters (Eq. 15), which are statistically esti-
mated assuming a certain distribution, here the multinomial distribution.

In order to apply this sophisticated data analysis strategy the data must be organized 
as in Fig.  2 (below): The different cells of a cross table are designated by k, which are 
transformed into k 0/1 dummy variables. In order to estimate the variety, the data set is 
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additionally supplemented by a variable comprising the number of disciplines (NUM_
DISC), mentioned in the proposal.

For this data design, a multinomial distribution is ideal as a multivariate distribution of 
categorical variables, which is a multivariate generalization of the binomial distribution, 
where k-1 cells (and dummy variables) are independent of each other. The following sim-
ple multinomial regression model applies (Hedeker, 2003). The k-dimensional vector of 
dummy variables d for a unit i (here project application) is multinomially distributed with 
the k-dimensional vector of cell probabilities p as parameters.

however, to allow more complex statistical analysis, the following parametric version is 
chosen:

This parameterization offers the opportunity to insert further variables into the model 
to explain the probabilities, for example a dichotomous variable  xi indicating the funding 
programme (1 = ”interdisciplinary programme”, 0 = “other programmes”).

Data and methods

Data example 1: Metric tide

To answer the question of how diverse research outputs are across research areas, we drew 
on data from the Metric Tide Report. Metric Tide analyzed the capabilities and limitations 
of research metrics and indicators. "It has explored the use of metrics across different dis-
ciplines and assessed their potential contribution to the development of research excellence 
and impact. It has analyzed their role in processes of research assessment, including the 
next cycle of the Research Excellence Framework (REF).

For the analysis, data on submissions for research projects funded since 2006 (Research 
Excellence Framework 2014) was used. Figure  3 shows an extract of the original cross 
table comparable to the cross table shown in Table 1 indicating how frequently 20 output 
types occur in 36 units of assessments (scientific disciplines). It would have been desirable 
for the analysis to have data on the output types for each individual research project. Such 
raw data were not available. Furthermore, it is not clear whether the frequencies represent 
the number of research projects in a cell or the sum of research outputs across all research 
projects in that cell.

To arrive at relative frequencies or probabilities, according to the simple data analy-
sis strategy the absolute frequencies were divided by the total number (N = 190.962). Ran-
dom variable X is the “output type”, and random variable Y is the “research area” (unit of 
assessment, UOA).

(12)�i ∼ multinom(�i)

(14)pk=
e�k∑K

k=1
e�k

,where for k = K: �K = 0 (e0 = 1)

(15)
pk=

e�0k+�1kxi

K∑
k=1

e�0k+�1kxi

,where for k = K: �K = 0 (e0 = 1)
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Data example 2: Ex‑ante evaluation data of a Swiss research funding organization

The statistical estimation of diversity and its components is based on data from a Swiss 
research funding organization. Open access data were downloaded from 11,707 projects 
(funding type “project funding”) that were funded in the years 2010–2020 (year of project 
start) (https:// p3. snf. ch/ Pages/ DataA ndDoc ument ation. aspx). The analyses were done for 
the three main disciplines based on 159 subfields: "Biology and Medicine", "Humanities 
and Social Sciences", "Mathematics, Natural- and Engineering Sciences”.

The funding organization does not actually want to make a statement about the interdis-
ciplinarity of its funded projects, but nevertheless codes in the dataset the different disci-
plines that were relevant in a funded project.

“Researchers allocate their application to a discipline in the SNFF list of disciplines. 
The disciplines are subsumed under research areas, which in turn form three major research 
domains: humanities and social sciences; mathematics, natural and engineering sciences; 
biology and medicine. Although many projects are interdisciplinary in nature, we use only 
the main discipline (as indicated in the application) for the key figures. If an application 
cannot be allocated to a main discipline based on the available data, we allocate it in equal 
parts to each of the mentioned disciplines”. (https:// data. snf. ch/ key- figur es/ docum entat 
ion).

Fig. 3  Extract of the table of frequencies for 23 research areas (UOA) × 6 output types (Wilsdon et  al., 
2015, p. 154)

https://p3.snf.ch/Pages/DataAndDocumentation.aspx
https://data.snf.ch/key-figures/documentation
https://data.snf.ch/key-figures/documentation
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Nevertheless, it is worth analyzing these data for research purposes in order to illustrate 
the approach described. However, we will refrain from drawing any further conclusions 
with regard to the funding organization.

The open data policy of the funding organization allows: “Downloading, printing or 
storage of open data from the SNSF is allowed. If any of this data is published, the source 
must be cited explicitly.” (https:// p3. snf. ch/ Pages/ OpenD ataPo licy. aspx). It is also allowed 
to processing of open data from this funding organization.

Results

Data example 1: metric tide

Different measures can be calculated for the data organized as cross table (Table  5) in 
order to test, whether research areas differ in their output type or whether output types 
depend on research areas. Thus, a statistically significant χ2-test value, a Cramer`s V of 
0.24 and a mutual information of − 0.40 show that the output type (X) depends on the 
research area (Y). Cramer`s V is a correlation measure for categorical variables varying 
between 0 and 1 and is more or less an alternative measure for the mutual information. 
There are, as expected, significant differences of the research area in the output types of 
the research output beyond chance. Looking at the ratio of the unconditional entropy of 
"output type", H(X), and “research area”, H(Y), to the total entropy, H(X, Y), the differences 
in frequencies are very much determined by the differences in "research areas" than the 
differences between "output types". While considering the "research area" reduces about 
(1.20–0.80)/1.20 = 33% of the uncertainty in the "output types", conversely only about 
(4.96–4.56)/4.96 = 8% of uncertainty in the "research areas" is reduced.

Overall, however, the diversity at 10.08 is very high, which is about 72.9% of the maxi-
mum possible diversity of 13.81. The maximum variety in the whole table is fully reached 
and the overall balance of 6.16 is 64.9% of the maximum possible balance of 9.49.

Table 5  χ2 and entropy measures

*p < .05 (df = 665)

Measure Label Value Maximum

χ2 χ2-test value 204,768.3*
Cramer’s V Cramer`s V (correlation) 0.24 1.00
I(X, Y) Mutual information (“disparity”)  − 0.40 0.00
H(X) Uncond. entropy “output type” (“balance”) 1.20 4.32
H(X|Y) Condit. entropy “output type” 0.80
H(Y) Uncond. entropy “research area” (“balance”) 4.96 5.17
H(Y|X) Condit. entropy “research area” 4.56
H(X, Y) Total entropy 5.76 9.49
Overall indices
Hvariety Variety 4.32 4.32
Hbalance Balance 6.16 9.49
Hdisparity Disparity  − 0.40 0
dive Diversity 10.08 13.81

https://p3.snf.ch/Pages/OpenDataPolicy.aspx
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Finally, diversity measures can be derived for the "research areas", which provide infor-
mation about the diversity for individual research areas. Diversity indicators for the first 11 
research areas are shown in Table 6. “Computer Science and Informatics" has the highest 
diversity with 4.19 and "Public Health, Health Services and Primary Care" the lowest with 
2.13.

"Computer Science and Informatics" has the highest variety of 4.0. "Clinical Medicine" 
has the highest balance (0.27) in this set of selected research areas. Among the different 
output types, "Journal articles" clearly shows the highest individual entropy, H(Y), i.e., the 
highest balance among all other output types across different research area (Table 7).

Data example 2: Ex‑ante evaluation data

The degree of interdisciplinarity is analyzed at the level of the 3 main disciplines. Over-
all, almost 90% of the funded projects are disciplinary (Table 8). For the funding instru-
ment "interdisciplinary projects" the percentage of interdisciplinary projects increases to 
68.8% compared to 8.7% for the "project funding in the narrow sense". This result pro-
vides empirical evidence for the use of these data for measurement issues in the realm of 
interdisciplinarity. In the following analysis only projects with more than one discipline are 
selected (N = 1221 projects).

Table 6  Diversity measures for a set of 11 research areas (UOA)

N = number of different output types Σ(pj > 0)

UOA Name N Variety Balance Disparity Diversity

1 Clinical Medicine 4 2.00 0.27 0.02 2.25
2 Public Health, Health Services and Primary Care 4 2.00 0.14 0.01 2.13
3 Allied Health Professions, Dentistry, Nursing and 

Pharmacy
8 3.00 0.23 0.01 3.22

4 Psychology, Psychiatry and Neuroscience 9 3.17 0.21 0.01 3.37
5 Biological Sciences 7 2.81 0.20 0.01 3.00
6 Agriculture, Veterinary and Food Science 6 2.58 0.12 0.01 2.70
7 Earth Systems and Environmental Sciences 7 2.81 0.15 0.01 2.95
8 Chemistry 5 2.32 0.13 0.01 2.45
9 Physics 8 3.00 0.17 0.01 3.16
10 Mathematical Sciences 9 3.17 0.19 0.01 3.35
11 Computer Science and Informatics 16 4.00 0.23 0.03 4.19

Table 7  Output types with 
highest individual balance values

Output type Balance

Journal article 4.15
Chapter in book 0.59
Authored book 0.45
Conference contribution 0.12
Edited book 0.11
Exhibition 0.05
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The statistical approach allows the testing of hypotheses formulated as statistical 
models. The following hypothese will be tested (Table 9): There are differences in diver-
sity as measure of interdisciplinarity between projects funded with the funding instru-
ment "interdisciplinary projects" and projects funded with other instruments  (M1). The 
lower the DIC the better the model fits the data.  M1 shows a lower DIC than the basic 
model  M0. There are, actually differences in diversity between the funding instruments 
“interdisciplinary projects” and the other funding instruments  (M1).

For the basic model  (M0) the different diversity components were estimated with the 
95%-credible interval. Additionally, the basic model was estimated for random data, 
which provide for maximum and reference values of the four different components. The 
variety of 1 reflect that on the average 2 disciplines were indicated by the applicants 
 (HV = − 1/log2(1/2) = 1). The balance is about 81% of the maximum possible value, very 
high. There is some similarity or dependency among the three disciplines, the disparity 
is not Zero. Diversity is about half of the maximum possible entropy (Table 10).

Table 8  Cross-tabulation of funding instruments with interdisciplinarity with respect to the 3 main disci-
plines (absolute frequencies, row percent)

Funding instrument Interdisciplinary Disciplinary Total

“Project funding” in the narrow sense 943
8.7%

9,929
91.3%

10,872
91.9%

“Interdisciplinary projects” 186
68.8%

84
31.1%

270
2.3%

Others 92
16.3%

473
83.7%

565
4.8%

Total 1.221
10.4%

10,486
89.6%

11,707
100%

Table 9  Model comparison 
regarding the 3 research domains 
(N = 1,221 projects) with the 
deviance information criterion 
(DIC)

The lower the DIC, the better the model fits the data (best models in 
italics)

No Description DIC

M0 Basic model 5,799.2
M1 "Interdisciplinary projects" vs. other fund-

ing instruments
5,792.9

Table 10  Estimated overall diversity components for interdisciplinary projects regarding the 3 research 
domains (N = 1,221 projects) with 95% credible interval in brackets

Model description Variety Balance Disparity Diversity

Basic Model  (M0) 1.02 [0.96; 1.07] 2.42 [2.35; 2.49]  − 0.90 [ − 0.94;  − 0.85] 2.55 [2.46; 2.63]
Maximum (random data) 1.59 [1.54; 1.63] 3.00 [2.99; 3.00]  − 0.00 [ − 0.00;  − 0.00] 4.58 [4.54; 4.62]
Percentages of Maximum 64.2% 80.7% – 55.5%
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Discussion

Diversity is a ubiquitous term used in many disciplines (e.g., ecology, sociology, bibliomet-
rics). A certain break in the discussion on diversity and diversity indicators was brought 
about by the indicator developed by Rao (1982) and Stirling (2007), which in view of its 
comparatively simple definition has a very wide circulation. It is to the credit of Rousseau 
(2019) to point out inconsistencies in this indicator, to which Leydesdorff (2018) has pro-
posed a workable solution. Furthermore, statistical concepts such as probability and cor-
relation/similarity are combined with each other in a way for which there is no statistical 
basis whatsoever, which was even noted by Rao (1982, p. 7).

Due to the problems of the Rao and Stirling indicator, the aim of this paper was to go 
back to Shannon’s probabilistic concept of entropy (Shannon, 1948), which implicitly dealt 
with all three facets of diversity, in order to develop a modified concept of diversity from 
it, which is additive in its nature and allows for both the calculation of a diversity indica-
tor dive as well as estimation diversity by a statistical model. Due to the fact that most 
interdisciplinarity indicators trace back to Shannon`s entropy, the Shannon`s concept of 
“mutual information” should be favored towards the concept of correlation (Pregowska 
et al., 2015). A statistical approach was presented how to estimate diversity and its compo-
nents. In the sense of Occam’s razor principle, the question arises as to why this more com-
plex approach should be given preference in practice over the simple concept of Rao and 
Stirling. First of all, there is no intention to replace the existing diversity indicators, but to 
identify opportunities for improvement. The following four reasons could be put forward:

1. Inconsistencies: Concepts with obvious inconsistencies are not very convincing and 
reinforce the negative image of bibliometrics.

2. Interpretation: Diversity can be interpreted in terms of entropy as a measure of informa-
tion. Diversity is at its maximum when events can no longer be predicted, as in a coin 
toss. The lower the diversity, the more predictable events are, the more structure is in 
the data.

3. Open the Pandorra`s box: The discussions on bibliometric concepts such as field nor-
malization, definition of fields, fractional counting and also diversity seem to be more 
or less closed with some more or less workable solutions. These considerations might 
reopen the discussion.

4. Stochastic nature: If the occurrence of publications, research output, citations, etc. is 
assumed to base on a stochastic random process, this must be taken into account within 
the development of an indicator.

5. Statistical estimation: In principle, diversity and its various components can be statisti-
cally estimated, as shown.

The calculation of the disparity indicator requires a workable solution on how to deal 
with the number of components that increases when the number of units increases (e.g., 
research output types, number of disciplines). For example, with 3 disciplines (A, B, C), 
there are 4 components of disparity (AB, AC, BC, ABC), with 4 and more units the num-
ber of components strongly increases. Eventually, disparity be it mutual information or 
correlation reflects combinations of disciplines, which often occurs. To get rid of disparity 
(~ 0) different types of combinations have to distinguished with the help of a latent class 
analysis (Mutz & Daniel, 2013; Mutz et al., 2012, 2014). Statistically, within a latent class 
the different units (e.g., disciplines) are uncorrelated.
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